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Abstract. An interesting research direction is to discover structured
knowledge from user generated data. Our work aims to find relations
among social tags and organise them into hierarchies so as to better sup-
port discovery and search for online users. We cast relation discovery
in this context to a binary classification problem in supervised learn-
ing. This approach takes as input features of two tags extracted using
probabilistic topic modelling, and predicts whether a broader-narrower
relation holds between them. Experiments were conducted using two
large, real-world datasets, the Bibsonomy dataset which is used to ex-
tract tags and their features, and the DBpedia dataset which is used
as the ground truth. Three sets of features were designed and extracted
based on topic distributions, similarity and probabilistic associations.
Evaluation results with respect to the ground truth demonstrate that
our method outperforms existing ones based on various features and
heuristics. Future studies are suggested to study the Knowledge Base
Enrichment from folksonomies and deep neural network approaches to
process tagging data.

1 Introduction

Many social media platforms allow users to annotate online data and resources
with tags. The accumulated social tags, contributed by millions of online users
(folks) collaboratively, are referred to as folksonomies [26]. The original idea was
that such folksonomies can provide efficient content organisation mechanisms to
support searching of online resources. However, over the years these folksonomies
have become a dormant collection of unstructured, noisy and often ambiguous
“keywords”, which has shown little usefulness.

To address this issue an interesting line of research is to extract “useful”
tags and organise them into some forms of structured knowledge, e.g., concept
hierarchies or lightweight terminological ontologies [14, 19, 28]. This task is quite
different from ontology learning from textual corpora [7] in which it is usually
assumed that enough textual data covering specific domains is available. There
are several reasons that make learning from tagging data challenging: (i) the
difficulties in capturing the intrinsic semantic relations among tags, (ii) sparsity
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of the tagging data and (iii) the significant amount of noise (e.g. syntactical
variations, typos and spam) and ambiguity (e.g. polysemy and synonymy).

Current methods rely heavily on exploiting co-occurrences of data or external
lexical resources to infer tag pair relations [9]. For example, by using heuristics
based on set inclusion [18, 19] or graph centrality analysis [14], it is possible to
derive the relations, but it is difficult to interpret their meanings explicitly. The
co-occurrence based methods typically need to re-compute the whole model when
new data is available and therefore do not scale well. In the case of methods based
on external lexical resources [8, 12], relations can be explicitly defined; however, a
limitation of this class is the low coverage of social tags and their senses typically
found in such lexical resources.

We chose academic research as the domain of study because the structured
knowledge that can be derived from academic resources is of particular interests
to the research community. Learning relations from tagging data in academic
domains is also more challenging than learning from general domains, as in the
former case many tags are phrases which have complex meanings. To address the
limitations of existing work, we propose a new approach to automatically learn
relations between tag pairs. The objective is to create knowledge hierarchies
by organising tags according to subsumption relations; more specifically, the
“broader” and “narrower” relations in the SKOS vocabulary [17] were adopted.

The main contributions of the work include:

– A method to extract domain independent feature sets for articulating the
meaning of tags based on probabilistic association analysis, which addresses
the aforementioned challenges associated with learning from tagging data;

– A supervised learning method to detect subsumption relations between tags
based on their features; the idea being that model trained in one domain can
be used in other domains; and

– Extensive experiments and evaluation using two large real world datasets
(Bibsonomy3 and DBpedia4) to demonstrate the effectiveness of the pro-
posed approach.

The rest of the paper is organised as follows. Related work on learning sub-
sumption relations and probabilistic topic analysis are presented in Sect. 2. The
proposed approach to learn subsumption relations from social tagging data is de-
scribed in Sect. 3. Experiment and evaluation results are demonstrated in Sect.
4. Finally, conclusion and future works are presented in Sect. 5.

2 Related Work

There are three broad categories of method that are used to learn relations from
social tagging data: (i) heuristic/rules, (ii) external lexical resource and (iii)

3 https://www.bibsonomy.org/
4 http://dbpedia.org/
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machine learning. Heuristic/rules based methods make use of various heuris-
tics or rules to define and consequently infer relations. Some well-known exam-
ples include the use of generality measures based on set inclusion [18, 19] and
popularity-generality measures using graph centrality [1, 4, 14]. However, it is
known that this category of method cannot formally define the semantic rela-
tions among social tags [11, 22]. Another problem is that it is difficult to establish
meaningful relations if tagging data are sparse. In other words, two tags may
co-relate to each other even though they do not co-occur. Furthermore, this
category of methods needs to re-compute the whole model whenever new data
becomes available and is thus not likely to scale well.

The second category of method is to ground social tags to external lexical
resources to find relations, for example, using WordNet5 [8], DBpedia and other
resources in the Linked Open Data Cloud6 [12]. However, the methods suffer
from the limited coverage of the external resources. The relatively static (or
slow-evolving) lexical resources or domain ontologies in general cannot effectively
capture data evolution in social media data. It has been found in [2, 3] that
WordNet can only represent less than half (48.7%) of the tags in the popular
general social tagging dataset del.icio.us [29]; moreover, for many of those that
are actually present in WordNet, no intended senses can be found.

The third category of method is to use either unsupervised or supervised
machine learning techniques to discover desired hierarchical patterns. The study
in [30] proposed an unsupervised divisive clustering algorithm based on Deter-
ministic Annealing to generate a reasonable tag hierarchy; however, it could not
discriminate among subordinate, related and parallel relations. By casting rela-
tion learning as a supervised classification problem, the work in [22] proposed
to detect subsumption relations using association rule mining, set-based tag in-
clusion measures and graph searching measures. One advantage is that various
heuristics or metrics can be used to learn relations. It is also shown in [22]
that when using supervised learning with a combination of feature sets, higher
F -measures can be achieved compared to any individual approach in the heuris-
tic/rule based category. However, these methods only extract features based on
co-occurrence and therefore have similar disadvantages as heuristic/rule based
methods. We adapt the idea of supervise learning, but with distinct feature sets
to detect semantic relations between tags.

To address the problem of data sparsity, it is necessary to reduce the dimen-
sionality of tagging data. A more effective method is also required to capture the
intrinsic semantic meanings of social tags, in different contexts, to disambiguate
their meanings. The study in [28] applied probabilistic topic analysis, e.g. La-
tent Dirichlet Allocation (LDA) [5, 23], to a collection of abstracts of scientific
publications from which subsumption relations could be derived. The study in
[25] also defined several metrics based on the distribution of topics for concepts
to learn ontologies from folksonomies. However, they only suggest how different
two tags are, not how they are associated or co-related. Our work addresses this

5 http://wordnet.princeton.edu/
6 http://lod-cloud.net/
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problem by extracting domain independent features from tag pairs according to
similarity, topic distributions and probabilistic associations. These features are
subsequently used for supervised learning.

Similar to probabilistic topic analysis, word embedding approaches can also
be used to represent tags in the form of a low dimensional space and consequently
better capture the similarity between tags than co-occurrence representation
[20]. However, a key disadvantage is that dimensions in word embeddings are
not probabilistically and semantically interpretable as probabilistic topic repre-
sentations (cf. [6]). Therefore in this study we chose probabilistic topic analysis
as the data representation technique and leave word embedding approaches for
a further study.

3 A Supervised Model for Learning Tag Relations

In social tagging platforms, users create tags to annotate resources. Thus, a folk-
sonomy can be formally represented using tuples of the form F := 〈U, T,R, Y 〉
where U , T and R are finite sets representing users, tags and resources respec-
tively; Y is a ternary relation between them, Y ⊆ U×T×R [15]. Due to the noisy
nature of tagging data (e.g. special characters, typos, and spam), data cleaning is
necessary. Variants of tags (e.g. ontology/ontologies, machine_leaning/machine-
leaning) also need to be handled using morphological analysis. Once cleaned the
folksonomy is transformed to Fclean := 〈U,C,R, Y 〉, where T is replaced by the
new finite set C, whose elements are tag concepts or tag groups.

We cast the problem of deriving relations among social tags into a supervised
learning problem. The input is a pair of tag concepts, Ca and Cb, represented as
two probabilistic distributions in the latent space. The output is the relationship
between them: a positive value means that Ca is a narrow concept of Cb. We
aim to find these broader-narrower relations (including both direct and indirect
ones) and optimise the sensitivity or recall [24] of the classification model.

As shown in Figure 1, the architecture for the proposed method consists of
four main components: (i) Data Cleaning: cleaning of noisy tagging dataset
and transforming it into a cleaned Folksonomy Fclean; (ii) Data Represen-
tation: representing each tag as a distribution of topics in a low dimensional
semantic space based on probabilistic topic analysis; (iii) Feature Set Gen-
eration: generation of feature sets based on topic distributions, similarity and
probabilistic associations; and (iv) Classification: training and testing of clas-
sification models by optimising sensitivity to detect subsumption relations.

3.1 Probabilistic Topic Analysis of Tagging Data

Analogous to “bag-of-words”, each resource from a tagging dataset can be rep-
resented as a “bag-of-tags”. Using probabilistic topic analysis, we can infer the
topic structure of tags in an unsupervised manner. One advantage of doing this
is that it allows us to obtain the topic distributions in a low dimensional space
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Fig. 1. Architecture of the supervised method to learn relations between tag pairs

which captures the meanings of tags under different contexts. This representa-
tion is also semantically interpretable: the value of an entry in the latent topic
vector reflects its relatedness to that particular topic. With probabilistic topic
analysis we can obtain a clear view on the semantic structure of the underlying
data, with tag-topic distributions p(C|z) and topic-resource distributions p(z|R).

Based on p(C|z) and the the Bayes’ rule, we represent each tag concept as
a probability distribution, p(z|Ca), computed as p(z|Ca) ∝ p(Ca|z) ∗ p(z). The
prior probability p(z) is usually treated as uniform in the literature [23]. However,
the prior distributions of the latent topics are certainly not uniform. We use a
non-uniform prior p(z) which respects the underlying dataset, computed as the
ratio of the number of tokens sampled to a topic z, Nz, to the number of tokens
in the whole dataset, N , p(z) = Nz

N . This can be obtained after approximation
in probabilistic topic analysis [23]. Usually a tag concept is only closely related
to few topics. As such, we introduce the notion of a significant topic set zsiga for
a tag concept, which is specified as zsiga = {z | z ∈ z and p(z|Ca) > p}, where p
is a pre-defined threshold (0.1 in this work).

3.2 Assumptions for Feature Set Generation

We define three assumptions for extracting features in order to discover broader
or narrower relations. They are proposed based on the human understanding
of a subsumption relation and the cognitive processing of such a relation with
respect to three aspects: (i) similarity (the two concepts should be similar), (ii)
topic distribution (a more general concept should relate to more topics than a
more specific one), and (iii) probabilistic association (given a concept in a certain
context, one would be able to derive associated concepts).

Assumption 1. (Similarity) For two tag concepts Ca and Cb to have a broader-
narrower relation, they must be similar to each other to some extent or they must
not diverge greatly.
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Table 1. Feature sets S1, S2 and S3 corresponding to the three assumptions

Features Description
S1: Similarity Measure Features

Cos_sim The cosine similarity of two topic distribution vectors
KL_Div1 The Kullback-Leibler Divergence from Ca to Cb

KL_Div2 The Kullback-Leibler Divergence from Cb to Ca

Gen_Jaccard The generalised Jaccard Index of two topic distribution vectors
S2: Topic Distribution Related Features

overlapping Number of overlapping significant topics
diff_num_sig Difference of the number of significant topics
diff_max Difference of the maximum elements in two tag vectors
diff_aver_sig Difference of the average probability of significant topics

S3: Probabilistic Association Features
p(Ca|Cb) The probabilistic association of Ca given Cb

p(Cb|Ca) The probabilistic association of Cb given Ca

p(Ca|Cb, Ra,b) The local probabilistic association of Ca given Cb and a common root concept Ra,b

p(Cb|Ca, Ra,b) The local probabilistic association of Cb given Ca and Ra,b

p(Ca, Cb) The joint probabilistic association of Ca and Cb

p(Ca, Cb|Ra,b) The local joint probabilistic association of Ca and Cb given Ra,b

Assumption 2. (Topic distribution) A broader concept should have a topic dis-
tribution spanning over more dimensions; while the narrower concept should span
over less dimensions within those of the broader concept. This reflects that the
narrower concept tends to have a focus on less topics but with higher probabilities
than the broader one.

Assumption 3. (Probabilistic association) For two tag concepts Ca and Cb to
have a broader-narrower relation, they should have a strong association with each
other. In a certain context, given one concept, one should be able to associate the
other. This can be modelled using the conditional and joint probability of latent
topics in a probabilistic framework.

3.3 Feature Set Generation

The three assumptions are translated into three feature sets, as listed in Ta-
ble 1. For Assumption 1, we extract features based on a number of similar-
ity/divergence measures, i.e., Cosine similarity, Kullback-Leibler (KL) Diver-
gence and Generalised Jaccard Index, together denoted as the feature set S1.
(KL) Divergence is an asymmetric measure of the divergence of two probability
distributions, which is also the relative entropy of one distribution with respect to
another. Since it is asymmetric, we generate two features, denoted as KL_Div1
and KL_Div2 as in Table 1. In [28], the difference between KL Divergences was
used to discover relations; however, we found that it is difficult to determine a
suitable noise threshold.

Topic distribution Based Features The intuition behind Assumption 2 is
that the significant topic sets zsig for two tag concepts Ca and Cb that have a
broader-narrower relation tend to be similar or significantly overlapped. While
the probability distribution for zsig of Ca tends to be more uniform, the distribu-
tion for Cb tends to be more imbalanced. This reflects the fact that the meaning
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of a narrower tag concept is more specific and is concentrated on fewer topics.
This is translated into the features on number of overlapped significant topics,
difference of the number of significant topics, difference of maximum probability,
and difference of the average probability of significant topics. They are referred
to as feature set S2 (see Table 1).

Probabilistic Association Based Features The idea of probabilistic asso-
ciation between two words has its root in cognitive psychology and was first
introduced in [13]. It measures the associative relations between words, which
can be computed as a conditional probability over a response word given a cue
word. The probabilistic association between two tag concepts can also be com-
puted based on this idea.

We model the associations using both conditional and joint probabilities in
the latent semantic space. While the conditional probability measures how a tag
concept would be associated given another one as a cue, the joint probability
measures how two tag concepts would be associated together.

We further propose to compute these two types of probability associations
with reference to a specific context. This is done by computing the probabilis-
tic associations conditioned on a third tag concept, which is usually the root
concept of a specific domain or sub-domain under consideration. This allows us
to learn relations and build a tag concept hierarchy in a progressive, top-down
manner. As an example, if machine learning is the domain of consideration, then
the concept “Machine Learning” is used as the root concept or context. As the
features are extracted by considering a particular context, they are referred to as
local associations. The relevant features are together denoted as S3 (see Table
1) and explained below.

– Probabilistic Association The probabilistic association between two tag
concepts is computed as the probability of one tag concept given another as
a cue in a global context. By the global context we mean that the conditional
probability is computed not conditioned on any other concepts. As this mea-
sure is asymmetric, we generate two features, p(Ca|Cb), and p(Cb|Ca); the
higher the probability, the stronger the association and the more likely that
a tag concept can be associated by another. We adopt the method proposed
in [13] to compute the two features.

– Joint Probabilistic Association The joint probabilistic association cap-
tures the likelihood of associating two tag concepts together without refer-
ences to any specific context. It is a symmetric measure, denoted as p(Ca, Cb),
which is computed as p(Ca, Cb) = p(Ca|Cb)

∑
z∈z p(Cb|z)p(z).

– Local Probabilistic Association To better capture the association be-
tween two tag concepts under a particular context, we propose the idea of
local probabilistic association, conditioned on the common root, Ra,b, of
both tag Ca and tag Cb. Since the association is asymmetric, we gener-
ate two features denoted as p(Ca|Cb, Ra,b) and p(Cb|Ca, Ra,b), respectively.
The feature is computed as p(Ca|Cb, Ra,b) =

∑
z∈z p(Ca|z)p(z|Cb, Ra,b) =
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∑
z∈z

p(Ca|z)p(Cb|z)p(Ra,b|z)p(z)
p(Cb,Ra,b)

, where p(Ca|z), p(Cb|z), and p(Ra,b|z) can be
obtained from the LDA analysis, p(Cb, Ra,b) can be computed using the joint
probabilistic association.

– Local Joint Probabilistic Association The local joint probabilistic as-
sociation is calculated conditioned on the root concept Ra,b for both tag Ca

and tag Cb. It measures how the two tags are jointly generated within a par-
ticular context. It is also a symmetric measure, denoted as p(Ca, Cb|Ra,b).
Similarly, it is computed as p(Ca, Cb|Ra,b) = p(Ca|Cb, Ra,b)p(Cb|Ra,b), where
p(Ca|Cb, Ra,b) can be obtained using local probabilistic association.

4 Experimental Results and Evaluation

To evaluate the proposed mechanism for learning the relations from social tag-
ging data, a series of experiments were conducted using two large, real-world
datasets: Bibsonomy and DBpedia. The tagging data from Bibsonomy was cleaned
and only the quality, frequently occurred tags were kept and matched to the
terms in DBpedia, which had been organised in a hierarchy. The features were
extracted by using the proposed method and used for training and testing dif-
ferent classification models. We also re-implemented and compared to (i) the
features proposed in [22] denoted as S4 with different feature sets and (ii) the
“Information Theory Principle for Concept Relationship” in [28] related to our
feature set S1. The evaluation results demonstrated that our method achieved
the highest recall, precision and F1.

Dataset and Feature Extraction We used the open dataset from Bibson-
omy7, which contains 3,794,882 annotations, 868,015 distinct resources and 283,858
distinct tags contributed by 11,103 users, accumulated from 2005 to July 2015.
We cleaned the dataset using morphological and statistical methods, following
the four steps in [10]: (i) specific character handling, (ii) multiword and single tag
group extraction, (iii) tag selection using selected metrics and (iv) tag selection
by language. After these, We selected the tag groups and annotations only for
academic publication resources. Each resource was represented as a “bag-of-tags”,
including all tags used by different users to annotate the resource. We further
removed the resources which have less than 3 tag tokens. Finally, we obtained
a cleaned, potentially high quality dataset, comprising 7,458 tag concepts and
128,782 publication resources.

To infer latent topics from social tags, we ran the LDA and Gibbs sam-
pling based on the MALLET Machine Learning Library8. The topic-word hyper-
parameter α was set to 50/|z|, where |z| is the number of latent topics, and the
document-topic hyperparameter β was set to 0.01. We held out 10% of the data
to optimise the perplexity of the LDA model and set |z| as 600.

7 https://www.kde.cs.uni-kassel.de/bibsonomy/dumps, the “2015-07-01” version.
8 http://mallet.cs.umass.edu/
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For tag grounding and instance labelling, we used DBpedia9 through query-
ing two ontological relations, skos:broader and dct:subject. Six categories with
which we are familiar were chosen (i.e., Machine learning, Semantic Web, Data
mining, Natural language processing, Social information processing and Inter-
net of Things). The extracted concepts were matched to the tag concepts in
Bibsonomy. In total, we extracted 355 tag pairs with direct broader relations
grounded to all the six DBpedia categories, which were used as positive in-
stances. It should be noted that an instance in our method represents features
extracted with respect to a pair of tag concepts and a common root of the two
tags. Negative instances were created by reversing the broader relations in the
positive instances, and generating some random negative relations under each
category. We finally obtained 1,065 instances for both training and testing. For
each of the instances, we extracted all the 14 features proposed in Section 3.3.

Classification evaluation 80% of the data was randomly selected for training
and 20% for testing. In both the training and testing data, the ratio of the
number of positive to negative instances was around 1:2. For the current work we
aimed to train classification models with high sensitivity. The evaluated metrics
used include precision, recall, F1 score, accuracy and the Area Under the receiver
operating characteristic Curve (AUC). For imbalanced data, as in the case of our
experiments, precision, recall, F1 score and AUC are more suitable evaluation
metrics than accuracy [24].

We trained a number of classifiers, Logistic Regression (LR) and Support
Vector Machine (SVM), on the data described above. For parameter tuning, 10-
fold cross validation was used. For the SVM model, we used the standard radial
basis (RBF) kernel and tuned two parameters C and γ [16] to optimise the
sensitivity. In addition, the weighted-SVM [21, 27] was used to boost the recall.
Weighted-SVM specifies two different misclassification cost parameters for the
two classes: C+ for positive observations and C− for negative observations. The
ratio of the misclassification cost parameters was set to 2, i.e., C+

C− = 2.
The evaluation and comparison results are presented in Table 2. From the

table, it can be seen that in all experiments, SVM performed better than LR
in terms of recall, precision, F1 score, accuracy and AUROC. A sensitivity of
73.2% was obtained using the standard SVM with RBF kernel. This setting also
produced the highest precision, F1, accuracy and AUROC values. By heavily
penalising the misclassification cost on positive instances, the weighted-SVM
achieved 100% recall. However, this setting produced a very high false positive
rate and therefore, the precision and accuracy were lower than the best results
obtained using the standard SVM.

Compared to the feature set S4, proposed in [22], which was mainly based
on tag co-occurrences, our proposed mechanism performed significantly better.
This is attributed to the well-founded assumptions based on the semantically
interpretable latent topics. Also, the recall and precision were not improved when

9 http://downloads.dbpedia.org/2015-10/core/, the “2015-10” version
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Table 2. Classification results using different feature set combinations

Recall Precision F1 Score Accuracy AUC

S1+S2+S3
(Full features in our approach)

LR 54.9% 60.0% 57.4% 72.8% 0.808
SVM 73.2% 65.0% 68.9% 77.9% 0.814
weighed-SVM 100.0% 42.0% 59.2% 54.0% 0.792

Wang et. al [28]
(S1)

LR 12.7% 47.4% 20.0% 66.2% 0.585
SVM 38.0% 58.7% 46.2% 70.4% 0.648

Rêgo et. al [22]
(S4)

LR 16.9% 63.2% 26.7% 69.0% 0.657
SVM 22.5% 57.1% 32.3% 68.6% 0.563

S1+S2+S3+S4 LR 56.3% 62.5% 59.3% 74.2% 0.808
SVM 71.8% 64.6% 68.0% 77.5% 0.818

S2 LR 22.5% 59.3% 32.7% 69.0% 0.752
SVM 59.2% 55.3% 57.1% 70.4% 0.688

S3 LR 4.2% 37.5% 7.6% 65.7% 0.769
SVM 5.6% 50.0% 10.1% 66.7% 0.794

S1+S2 LR 42.3% 61.2% 50.0% 71.8% 0.761
SVM 63.4% 57.0% 60.0% 71.8% 0.699

S1+S3 LR 32.4% 54.8% 40.7% 68.5% 0.700
SVM 62.0% 64.7% 63.3% 76.1% 0.776

S2+S3 LR 33.8% 60.0% 43.2% 70.4% 0.787
SVM 59.2% 60.9% 60.0% 73.7% 0.743

* S1 denotes Similarity and Divergence Based Features; S2, Topic distribution Based Fea-
tures; S3, Probabilistic Association Features; S4, the baseline feature set in [22] including
support, confidence, cosine similarity, inclusion and generalisation degree, mutual overlap-
ping and taxonomy search.

we combined our features with the baseline features (S1+S2+S3+S4), 71.8%
recall, 55.0% precision compared to 73.2% and 55.0% when only S1+S2+S3
was used, showing that the co-occurrence based features do not provide any
further contribution to the results.

Table 2 also shows the results obtained when different combinations of the
feature sets were used. With all three feature sets both LR and SVM produced
the best recall, F1, accuracy and AUC values. When only one feature set was con-
sidered, as can be seen from from the table, using the topic distribution related
features (S2 founded on Assumption 2) generated the best results when using
SVM (59.2% recall and 57.1% F1). Both topic distribution related features and
similarity/divergence features significantly outperforms the baseline S4. When
two sets of features were considered, the similarity/divergence (Assumption 1)
and topic distribution related (Assumption 3) features produced the best re-
sults in all cases. If the similarity/divergence based feature set S1 alone were
used, then the method corresponds to the method on learning ontologies from
publication abstracts as described in [28]. Surprisingly, the result produced from
tagging data was not useful, which shows that the feature set S1 alone is not
sufficient for capturing the meaning of tag concepts. This can be attributed to
the fact that publication abstracts contain much richer information than tags.
Another notable finding is that, although probabilistic association based features
S3 alone led to low recall (5.6% by SVM and 4.2% by LR), it boosted the recall
significantly (increasing it by 15.5% from 63.4% to 73.2%) when combined with
the other two feature sets. Some example hierarchical relations predicted on the
test set using SVM and the three feature sets are shown in Table 3.
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Table 3. Examples of learned relations from Bibsonomy tags using the three feature
sets S1+S2+S3 with SVM

narrower → broader concept narrower → broader concept
social_graphs → social_networks semantic_analysis → machine_learning
mixture_model → data_mining unsupervised_learning → machine_learning
folksonomy → collective_intelligence latent_variables → bayesian_networks
semantic_search → semantic_web sentiment_analysis → natural_language_processing
delicious → social_bookmarking word_sense_disambiguation → natural_language_processing

5 Conclusion and Future Work

Social tagging data represent a potential source for extracting structured knowl-
edge, which is of particular interests and importance to the research communi-
ties. In this on-going work, we have presented a novel method to derive domain
independent features and learn broader/narrower relations among tag concepts
in constructing such structured knowledge. Based on our understanding and
perception of concept relations, three assumptions are proposed to determine if
a broader-narrower relations holds between any two given tag concepts. These
assumptions are then translated into a number of effective feature sets for the
learning task, in particular, the probabilistic association based one, which helps
capture tag relations based on human cognitive processing of information. The
experiment and evaluation results confirmed the effectiveness of the method
and showed that the proposed method significantly outperforms existing work
in terms of recall, the primary focus, precision and the F1 measure. The com-
bination of feature sets is an effective strategy for detecting relations among
tags. For future study, we plan to further fine-tune this approach to built knowl-
edge hierarchies iteratively and progressively. We will extend our experiments,
using DBpedia only, to several heterogeneous Knowledge Bases covering all do-
mains for tag grounding and instance labelling. We also plan to evaluate the
performance of our method to see if it can be used for the purpose of enriching
existing Knowledge Bases with new concepts and relations. Deep neural net-
work approaches, leveraging both probabilistic topic representation and word
embeddings, are also to be explored.
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